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Preface

In any study of the relative value of one particular
method compared with another, one must always consider the
context in which the methods were compared. The four
methods compared in this study: collocation, finite differ-
ences, Galerkin, and least sguares, have been bent, folded,
and mutilated by the pencil and erasure of a young aspiring
engineer. Fortunately, the methods and the engineer are
still operating today and I have several people to thank
for that.

The gentleman who has patiently guided me through
this project is Captain James E. Marsh. His guidance and
understanding were of great value to me. Dr. John Jones, Jr.
and Major Stephen J. Koob also contributed significantly to
my understanding of this project. On the nontechnical
aspects of the project, my wife Marisa was a true inspira-
tion.l Her thoughtful support was priceless to me. And to
Ms. Phyllis Reynolds my very capable typist, I owe my most

sincere thanks for her patience and perseverance.
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| Abstract

Four numerical methods are used to solve a spe-
cific set of problems and then the methods are compared for
accuracy and efficiency.

The methods are: standard finite differences,
collocation, Galerkin, and least squares. The latter three
methods are finite element methods which use either Lagrange
linear, Hermite cubic, or Hermite septic piecewise poly-
nomials as interpolation functions.

The problem set consists of second- and fourté{vﬁl
order, linear and nonlinear, differential equations with
constant and variable coefficients. The linear equations
govern elementary structural members and the nonlinear equa-
tion is a one-dimensional analog for transonic flow past an
airfoil.

The three major conclusions are: (1) the least
squares method with Hermite cubic polynomials was the method
of choice for the second-order linear equations, (2) the
collocation method was chosen over the Galerkin and the
finite difference methods for the fourth-order equations,
and (3) Galerkin method was chosen over the collocation

method for the nonlinear problem.
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COMPARISON OF NUMERICAL ANALYSIS METHODS FOR

SOLVING ONE-DIMENSIONAL, ELLIPTIC

DIFFERENTIAL EQUATIONS

I, Introduction

Background

Comparisons of numerical analysis methods for
solving differential equations have been of interest for
many years. One of the most recent studies was performed
by Houstis et al. (Ref 5). 1In this study four methods were
evaluated for solving second-order, linear, elliptic,
partial differential equations. The four methods were:
standard finite differences; collocation; Galerkin; and
least squares using Hermite cubic piecewise polynomials.
They concluded that:

1. There is normally a "crossover point" at low accu-
racy beyond which collocation is more efficient than
standard finite differences. Even when finite
differences is more efficient, it is by a small
amount while collocation is sometimes dramatically
more efficient than finite differences. Colloca-

tion is much superior for problems whose boundary
conditions involved derivatives.

2. There is practically no difference at all between
Galerkin and least squares performance. They tend
to be slightly more accurate than collocation but
are very much less efficient because of the increased
work to compute the coefficients in the matrix prob-
lem to be solved [Ref 5:324-325].

o L,




In view of this work the question arises, will these results
hold for higher-order linear and nonlinear differential
equations?

The three differential equations selected for com~
parison analysis in this thesis are equations which govern
elementary problems from the field of aeronautical engineer-
ing. The first problem, the axial deflection of a rod, is
governed by a second-order, linear, ordinary diffevential
equation. The second problem, the bending of a be.n, is
governed by a fourth-order, linear, ordinary differential
equation. 1In practice these two structural members are
used to model more complicated structures. For example,
in the computer program "ANALYZE," used by the Air Force
Flight Dynamics Laboratory for analysis of aerospace struc-
tures, the rod member is used to model spar and rib caps
and other line elements (Ref 11:18). The third differential
equation is second-order and nonlinear; it represents a
one-dimensional, steady, analog to the problem of transonic
flow over an airfoil. Pung, et al. (Ref 3), solved this
equation with unsteady perturbations using a finite differ-~
ence method. The finite element methods included in this
thesis have not been used previously to solve this non-
linear equation. The purpose of this thesis is to deterxrmine
if the results of Houstis (Ref 5) apply to these three prob-
lems.

The numerical methods evaluated by Houstis and used

in this study can be classified into two categories: finite
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difference methods, and finite element methods. Three formu-

lation techniques were used to obtain the finite element
equations. They are: collocation, Galerkin, and least
squares methods. These numerical methods as used in this
study transform the original continuous differential equa-
tion into a system of algebraic equations. These equations
can be solved to yield an approximate solution to the
original continuous problem. Although the four methods all
yield algebraic equations, the approaches are very different
for finite element methods as compared to finite difference
methods.

The finite difference method approximates the
derivatives appearing in the governing differential equa-
tion by difference gquotients (Ref 4:222-228). These gquo-
tients are formulated at N (a finite number) points in the
problem domain. This process generates N equations, non-
linear in general, with N unknowns. After implementing the
boundary conditions, the resulting equations can be solved
for the remaining unknown values. These values of the
function at N points form a discrete approximation to the
solution of the problem.

Unlike the finite difference method, the finite ele-
ment methods yield a piecewise continuous approximation to
the solution (Ref 6:3-9). The approximation is achieved
by discretizing the domain into E elements, with N nodes
and M nodal parameters. The approximate solution in a

"global" sense is given by:




——

~ M
¢ = le Ny, (1)
where
; = global approximate solution,
Nj = global shape (interpolation) functions, and
¢j = nodal parameters (field variables)

When Eq (1) is substituted into the continuous differential
equation there will be some error for all cases except
where the number of parameters M is infinite, or where the
shape functions contain all terms of the exact solution.

The error € is given by

e = £(¢) - £ (2)
where
¢ = vector of nodal errors,
£ = differential operator, and
f = vector of equivalent nodal forces.

The finite element equations are derived in this thesis by
the method of weighted residuals (Ref 6). This method
requires the residual error € be zero in some average sense.
The generalized orthogonality condition is used to achieve
this result. In general, the error is forced to satisfy the

following equations

./;widﬂ =0 i=1,2,...,M (3)
1Y)

) |
3
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where

f
V.

1

problem domain,

weighting functions.

The procedurekyields M algebraic equations with M unknown
nodal parameters. When solved for, the parameters can be
substituted in Eq (1) to give the approximate solution to
the problem. These equations can be simplified by writing
Eq (3) as the sum of integrals over each element. By using
an appropriate coordinate transformation each integral can
be evaluated on a local basis. Likewise, the approximate
global solution 5 is assumed to be the sum of the approxi-
mate solutions within each element.

Thus -
-~ E -~
6=y ¢ (&) (4)
e=1

where ¢(e) is the approximate "local" solution in element
e. These local solutions are related to the elemental

nodal parameters by the following equation:

m
ple) 23 Ny, (5)
=1

where

m = number of ncdal unknowns associated with
element e,

Nj = local shape functions defined for element e,
and

¢j = nodal parameters associated with element e.
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Then if the residual error in each element is forced to
satisfy Eq (3) over the element's domain, the result is m
equations in m unknowns. These m equations will have the
same form for all like elements. Thus, the equations for
other like elements are easily generated, and the global
equations can be assembled from the E sets of local equa-
tions. This similarity between like elements greatly
reduces the amount of work required to formulate the global
equations. More of the details for the finite element tech-

niques are given in Appendices C and D.

Approach
The general approach followed by Houstis (Ref 5)

is used in this work. This approach consists of choosing:

a problemn set from the specified domain, the numerical
methods, and the performance criteria for evaluating the
methods. The next step is to select and solve specific
problems; and, lastly, evaluate each method according to the
criteria established.

The problem set has been briefly described in the
previous section. It consists of second- and fourth-order,
linear differential equations with both constant and vari-
able coefficients. The last problem is a second-order
nonlinear differential equation. The two constant coef-
ficient, linear equations are solved for two sets of

boundary conditions and two different forcing functions.

The two variable coefficient equations are solved for the

et i hiD. I ae bt e m ae st




same two sets of boundary conditions and for one forcing

. function. ?he problem set is described in greater detail

| in Chapter II.

f The standard finite difference method is used only
to solve the linear problems whereas the finite element

‘ methods are used for all of the problems. The finite dif-

| ference formulations for each problem are presented in

Appendix B. The finite element formulations for each prob-

lem are described in Appendices C and D.

The performance criteria chosen are: ease of formu-
lation, accuracy of the solution, computational time
required, and "efficiency" of the numerical method. Effi-
ciency was chosen in this study as a function of formation
time versus accuracy achieved; where accuracy was defined
as the maximum error at any node or grid point. The imple-
mentation of the methods and the evaluation of their perform-

ance was done with the use of computer programs written by

the author in FORTRAN EXTENDED. Several routines were used

from the International Mathematical and Statistical Library

(Ref 7) for solving the systems of equations and for matrix
manipulations. The programs were executed on the Aero-
nautical Systems Division Computer at Wright-Patterson Air

Force Base, Ohio.

,
2
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II. Problem Set From One-Dimensional

Elliptic Differential Equations

Second-Order Linear--Axial Rod

The axial deflection of a rod under the influence
of an axially distributed force is illustrated in Fig. 1.

This system is governed by the differential equation:

2 ;A(X)E ‘-’l’d‘%’-g = -F(x) (6)
where
E = Young's modulus,
u(x) = axial deflection,
F(x) = axially distributed force, and
A(x) = cross-sectional area.

For a tapered rod with a taper ratio o, the cross-sectional

area is given by
A(x) = A (1-of) , 0<x<L (7)

where A is the area at the root of the rod. If the taper
ratio o is zero, the area is constant and the problem

reduces to the uniform rod. Two possible boundary condi-

tions at the ends are:




(a) Clamped~clamped, half-sin load, a=0

/———F {x)=P sin (1%‘-)
—

; > u(x) \1\(x),E,L

)

»®

SASNN

(b) Clamped-free, uniform load, a=0.5

/— F(x)=P (constant)

e

e————l—

2 u(x) \—-A(x) ,E,L

A=root area

Fig. 1. Uniaxial Deflection of a Rod

Lk e A R e o m s




u(xk) =0 - zero displacement (8)

A(x)E —ax = 0 - zero axial force (9)

where Xy is the coordinate at the particular end. The six
cases of the axial rod studied are detailed in Table I,
where the uniform load is F(x) = P (constant); and the"half-

sin" load is F(x) = P sin (%?).

Fourth-Order Linear--Beam in Bending

The governing differential equation for the bending
displacement of a beam subjected to a transverse load, as
illustrated in Fig. 2 is fourth-order and linear. The

equation is

2 2
4" e WX 2 pig (10)
dx? dx?

where w(x) is the transverse displacement and I(x) is the
cross~sectional moment of inertia. The moment of inertia

is given by:

I(x) = I(1-a-F), 0<x<L (11)

where I is the moment of inertia at the root of the beam.

The boundary conditions studied with Eq (10) represent the

same end constraints as studied with the rod. The boundary

conditions for a clamped end are:

10




(a) Clamped~clamped, half-sin load, a=0

F(x) = P sin (ﬂfx)

e . o -
" y
et e e e et ———

f s
S N ¢
- =~ ,
. 4 - A \\-\¥ 7
/ o’-’ - :—\_ ’
‘ T AN y X J
7/ .

: ' \ \— I{x),E,L
¢ w(x)

(b) Clamped-free, uniform load, a=0.5

/——F(x) = P (constant)

-
= Y

Fig. 2. Transverse Bending Displacement of a Beam
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0 - zero displacement

w(xk)

| (12)
g | aw = 0 - zero slope
1 ax p
i x=xk
i .
- For a free end the boundary conditions are
F a’w _ .
. : I(X)E — = 0 - zero bending moment
hf! dx?
. (13)
] adw
I(X)E — = 0 - zero shear force
ax?
X=X,

As with the axial rod, six cases are studied. In all cases
the boundary conditions at the left end are given by Eq (12)

with the coordinate X, = 0. The details are given in

Table II.
Table II
Beam Problems--Exact Solutions

! Taper BC Egn Exact Sol
: Description Ratio at ﬁfL Egn No
4

Clamped-Clamped Uniform

Beam, Uniform Load 0.0 {12)

__P_ ) _ 3 2,2
wix) = 54ET )X 4Lx° + 6L“x (14)

13




Table II--Continued

Taper BC Eqgn Exact Sol
Description Ratio at x;L Egn No
Clamped-Free Uniform
Beam, Uniform Load 0.0 (13)
wix) = =0 x* -~ 2Lx® + L%x? (15)
24EI
Taper BC Eqgn Exact Sol
Description / Ratio at xiL Egn No
Clamped-Clamped Uniform
Beam, Half-Sin Load 0.0 (12)
2 2
x(x) = 22 %r sin %? + x? - xL (16)
m3AE
Taper BC Egn Exact Sol
Description Ratio at xiL Egn No
Clamped-Free Uniform
Beam, Half-Sin Load 0.0 {(13)
. PL YL L oomx o x? . Lx? _ L%x
x (x) TAE | 3 sin 3 3 + 3 = (17)
14
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Table II--Continued

Taper BC Egn Exact Sol
Description Ratio at xi? Egn No
Clamped-Clamped Variable
Beam, Uniform Load 0.5 (12) (18)
w(x) =£ - x? (C1-PL) + [(2L—x)1n(1— ) + x] (PL—C1+C2
EI 24L 4L 2L
11 2
2 i}lhao 5 2 = P12 22 +3 In 0.5
Cl =PL !
1+ 1.5 1n 0.5 1+ 1.5 1In 0.5
Taper BC Egn Exact Sol
Description Ratio at xiL Eqn No
Clamped-Free Variable
Beam, Uniform Loaad . 0.5 (13)
_ PL - i} x?
wix) = BT L?*[(2L-x) 1n (1 L) + x] 3 (19)

15




Second-0Order Nonlinear

A one-dimensional, steady, second-order, nonlinear
analog of the governing differential equation for transonic

flow over an airfoil is given by

(1-¢, )0, . =0 0<x<1 (20)
where
¢ (x) = field variable - potential,
¢'x = f%rst der%vative with respect to x of the
field variable ¢, and
¢'xx = second derivative with respect to x of the

field variable 9.

The boundary conditions are

¢ (o) = Cl
(21)
¢Ix(o) = cz
and either
(1) = C4 (22)
or
¢Ix(1) = C3 (23)

where Cl' C2, C3, and C4 are constants.

If the differential equation is solved with the two boundary
conditions at x=0 and with either boundary condition at

x=1, the exact solution may be discontinuous. This solu-
tion is illustrated in Fig. 3 for positive constants C,y

through C4.

16




Fig. 3. Exact Solution to the
General Nonlinear Problem

The coordinate of the discontinuity n is given by

n =134 e C
c,-C ! 2773

The solution to the left of the discontinuity is

¢L(x) = C2x+C1 ’ 0<x<n

and to the right of the discontinuity the solution is

_ - n<x<1
¢R(x) = C4(1 c3x),

(24)

(25)

(26)

The particular problem studied in this work has constants

C1=C4=0 and Cz=-C3=l, thus the break occurs at the coordin-

ate n=0.5. This solution is illustrated in Fig.

The equations of the solution are:

17




T T —s

Fig. 4. Exact Solution to
Nonlinear Problem Studied
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i III. Computer System and Program Information

i The use of a high speed digital computer is a must

for any study of numerical analysis methods. The numerical

calculations for the linear problems studied in this
thesis were performed with the aid of the ASD computer sys-
tem. This system has two Control Data Corporation central ’
processors operating in parallel. The CDC 6613 and CDC
CYBER 74 processors both have 131000lo 60-bit words of
central memory. F
The computer programs written by the author for this
study perform all but three of the manipulations required |
to formulate, solve, and analyze the numerical solutions.
These three manipulations are performed by subroutines from
the IMSL code in operation on the ASD computer. The manipu-

lations and associated subroutines are:

l. matrix multiplication -- VMULBB {
2. linear equation solving -- LEQTI1B
3. vector maximum value search -- VABMXF 1

All matrices are stored in band storage mode where only i
elements on the diagonals are stored. A flow chart of the

main program is included as Fig 5.

19




_ INPUT |
: E, B.C., LOAD :

COMPUTE
MATRIX
DIMENSIONS

i

CALCULATE
EQUATIONS FOR
ELEMENT e

ADD ELEMENT e
EQUATIONS TO
GLOBAL EQUATIONS

e=e+l

Y

Z

IMPLEMENT BOUNDARY
CONDITIONS

SOLVE AX=B |
EQUATION -

COMPUTE _
APPROXIMATE !
DISPLACEMENT

CALCULATE
ERROR

(o )

Fig. 5. Main Program Flow Chart
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IV. Results and Discussion

The results of this study are analyzed according
to the types of differential equations solved. Thus the
results show which method performs best for each class of
differential equations.

In addition to the performance criteria introduced
in Chapter I, several other criteria are also included in
the results, for they show a more complete trend than just
the criteria stated in Chapter I. The entiré list of
criteria is given in Table III. When comparing errors
the roundoff error must be considered. Because of round-
off error in the solutions, some entries in Tables A-I
through A-XII are nonzero, but many orders of magnitude
smaller than similar entries. The growth in these nonzero
terms is of great importance for they indicate an unstable
algorithm when the growth rate is exceptionally large. This
phenomenon is discussed later. 1In all cases, the error com-

pared is a relative error €r defined at a point as

where

~

¢ = approximate solution at a point in the domain,

¢ = exact solution at the same point in the domain,
and
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Table III

Performance Criteria Used for Comparing the
Numerical Methods for Linear Problems

Table Entry

Description of Criteria

Max Nodal
Error

Max Point
Error

Best Nodal
Error

Best Point
Error

Execution
Time

Formation
Time

CF

CFN

CFP

Efficiency
Point

Number of
Elements

Maximum relative error at any node or
grid point

Maximum relative error at any one of
97 equally spaced points in the
domain--all nodes are included in
this sample

Best Maximum Nodal Error for each
method and each problem

Best Maximum Point Error for each
method and each problem

Decimal seconds required to solve
the global equations

Decimal seconds required to compute
and assemble the global equations;
and implement the boundary conditions

Convergence factor for a particular
halving of the stepsize

_ _e(h)
~ e(h/2)

--the order of convergence is equal
to YCF. If CF<1l.0 the algorithm
diverges

CF

Max Nodal Error convergence factor
CF for smallest stepsize studied

Max Point Error Convergence factor
CF for smallest stepsize studied

Maximum efficiency for each method
and each problem where efficiency is
the log {[Max Point Error (Formation
Time)5]-1}

Number of Elements corresponding to
maximum efficiency
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(x), = exact solution at X1=0.5 for clamped-
b clamped boundary conditions and X1=1.0
3 1 ' for clamped-free conditions.

1 These points give an exact solution that is either the
|
; maximum or very near the maximum displacement.

Second-Order Linear--Axial Rod |

The results presented in Tables IV through IX indi-
-y cate a general trend. That is, the higher-order finite
element methods, collocation and least squares, are more ;
accurate'throughout the domain than are finite differ-
ences and Galerkin's method. This is evidenced by small
pointwise errors for the higher-order methods. Least
squares is by far the most accurate and most efficient

method studied for this second-order problem.

Finite Differences and Galerkin's. These two

methods both use a linear approximation for the field vari-
able. This order 6f approximation is not as accurate as
the cubics even though the solution at the nodes matches
the exact solution identically. For Problems 1 and 2,

the values recorded in Table IV and V for these two methods
correspond to a solution with thirty-nodes. The Best Point

Error indicates the maximum error at one of 97 equally

spaced points in the domain. This quantity reveals an
E accuracy of only two digits for these methods. Both
methods proved to be accurate to the order h? as expected,

for all the second-order problems except for Problem 1

23
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where the nodal error increased at a rate proportional to

h-'s'6 = h_z‘4 . According to Fix (Ref 2 :205-215),

the round-off error is bound by the condition number of the

-2m

Toeplitz matrix. This upper bound is h where m is the

order of the differential equation. 1In this case, the round-
off error should be less than Ch_4: C=constant. Therefore,
the errors present in these problems are acceptable con-

sidering that the error present is in the thirteenth digit

on a machine with fourteen significant digits.

Collocation and Least Squares. These two methods

give excellent accuracy for Problems 1 and 2 but are
definitely unstable. This is due to the fact that the cubic
approximation with two boundary conditions will solve the
governing differential equation for Problems 1 and 2 exactly
with only one element. By increasing the number of ele-
ments one simply increases the probability that the dis-
cretization error and/or the roundoff error will be
increased. On the other hand, for the four remaining rod
problems the exact solutions are either functions of natural
logarithms or trigonometric functions. These solutions can
not be modeled exactly with a third-order polynomial. For
these four problems the collocation method is only of order
h? where as the least squares method approaches an order

of accuracy h”. It is also interesting to note that the

order of the approximation polynomial does not noticeably

27
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affect the round-off error. This can be seen from the

results of Problems 1 and 2, where for the collocation
method the error grows at approximately the same rate as
for the finite difference and Galerkin methods. This

observation is also made by Fix (Ref 2 :215).

Fourth~Order Linear--~Beam in Bending

The results for this system are given in Tables X
through XV. The tables show that for the simple cases of
Problems 7 and 8 the methods using a septic approximation
are exceptionally accurate and very efficient. But as the
problem becomes more complex the septic shape functions do
not guarantee a more accurate solution than is obtained by
the Galerkin's method with cubic shape functions. It is
also apparent that the order of convergence is very
strongly dependent on the particular problem being solved.
This fact is substantiated by examining the convergence
factors CF for the Galerkin method in Tables X through XV.
For the tapered beam the algorithm is only of order h?
whereas for the uniform beam with a half-sin load the
method is of order h'. 1In Problems 7 and 8 the change from
o(h"*) to 0(h?) is brought about by simply freeing the right
end of the beam. As with the Axial Rod, the higher-order
methods are unstable for the cases where the exact solution
is of less order than the approximation function. The
explanation of this is the same as for the axial rod. For

the simple cases the collocation or least squares methods

28
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give good results with only one element. The collocation
method is the most accurate and efficient method for all of
the problems except the half-sin loaded beams. For these
last two problems the Ga}erkin method was more efficient
due to the mofe simple calculations regquired to form the
global equations. The collocation me_hod exhibited very

poor convergence for the variable beams.

Nonlinear Problem

The nonlinear problem was solved without the aid of
the digital computer due to a lack of time. The two approxi-
mate methods used were the Galerkin method and the colloca- i

tion method. Two iterative formulations of the original

differential equation were used as detailed in Appendix F;
each proved to behave quite differently. It was expected
that formulation A, which does not have an iterative forcing
term, would give the fastest convergence. This was, in fact,
the case; formulatibn A gave the exact solution after one
iteration. Formulation B converged to the correct solution
but took several iterations. The numerical results for this
problem by the Galerkin method are given in Table XVI,

and for the collocation method in Table XVII. The process
of solving the equations using a hand calculator forces one
to place more emphasis on the "efficiency" of the method.
Efficiency in this context could be defined as the number

of keystrokes required to obtain the solution for each
itefation. By this measure the Galerkin technique is

definitely easier to work with.
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The nonlinear problem studied required some knowl-
edge of the physical process that Eq (F-1) is used as an
analog for. The boundary conditions chosen are mathe-
matically convenient but not physically desirable. The
condition ¢(1)=0 implies'that the function itself goes to
zero at x=1. A better choice for the boundary condition at
x=1 would have been ¢x(l)=c4. This implies that the func-
tion is nonzero at the boundary. Another aspect of the
problem which must be understood is the condition that a
jump in the first derivative of ¢ must occur in the flow
field. The function is continuous but the derivative
changes discontinuously, which models the idealized behavior
caused by a shock in the flow field. This behavior requires
an approximation to the field variable which has first
derivatives as nodal parameters. Such an approximation dis-
qualifies linear shape functions even though the exact solu-

tion can be represented by two straight lines.

35




V. Conclusions

One of the objectives of the study was to determine
if comparisoné made by Houstis (Ref 5) based on a second-
order, two dimensional, constant coefficient problem set
would hold for a set of higher-order variable coefficient
problems or nonlinear problems. In searching for an answer
to this question several other conclusions were also
obtained. The conclusions of this study are:

1. For the second-order linear problem studied,
the least squares method, with Hermite cubic polynomials,
is more accurate and also more efficient than the colloca-
tion, Galerkin, or finite difference methods studied. The
least squares method outperformed the other four methods for
all six cases of the axial rod studied. The most heavily
weighted performance criteria were efficiency and accuracy,
in that order.

2. For the foﬁrth-order linear problem studied,
the least squares method with Hermite septic polynomials

was only used for the constant coefficient case with a con-

stant forcing term. 1In this case least squares performed
equally as well as collocation, with the same interpolation
functions; and significantly better than finite differences ]
and Galerkin with lower-order interpolation functions.

For the variable coefficient case collocation was slightly
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less efficient than the other two methods. In general,
collocation was the method of choice.

3. For the nonlinear problem the Galerkin and
collocation methods both perform similarly. The number of
calculations required foé each iteration was much greater
for the collocation method than for the Galerkin method.

The second conclusion obtained by Houstis varies
significantly from those of this study. This difference
can possibly be accounted fbr by the fact that Houstis used
a numerical integration scheme for the Galerkin and least
squares methods. Since the methods were formulated with
polynomials, the integration is trivial and numerical inte-

gration is not called for.
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Appendix A

Numerical and Graphical Data

This appendix contains all of the numerical results
for the linear problems. These results are given in
Tables A-I through A-XII for which the headings are defined
in Chapter IV. Each table presents data for one specific
problem as solved using the various numerical methods.

The graphical data shows two aspects of the study.
The first six graphs are representative of the way in which
the methods approximate the solutions to the various prob-
lems. The next twenty-four graphs are plots of the relative
error at 97 points in the domain. This number of points
was chosen because it insures that the plotted solution will

not "skip over" any nodes for the values of E studied.
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Appendix B

Finite Difference Expressions and Sample Problems

The finite difference method uses difference quo-
tients to approximate the derivatives in a differential
equation. These quotients are formed at N+l (a finite
number) grid points in the problem domain. For the one-
dimensional problems in this study the domain is discretized

as shown in Fig B-1.

¢e ¢ 4’N-l ¢N

eh (e+l)h . (N-1)h Nh=L

Fig B-1. Discretization of One-Dimensional Domain
for Finite Difference Method
Near the boundaries the difference quotients may fequire
that a "false" node exist outside the domain. This situa-

tion can easily be handled if symmetry about the boundary




is assumed (Ref 8:143). This situation is illustrated in

Fig B-2.

S .

S [ ,
-h % h 2h / X

{ x=
‘ by symmetry ¢1 = ¢1

Fig B-2., Symmetry of Approximate Displacement
About a Clamped End

Axial Rod

.

E The governing differential equation for the axial

rod is

d“} = -F(x) . (B-1)

a .
dx{A(x) E &
which after differentiation.becomes

du? | dA(X) QU _ __ . _
A(x)E P + =3 Egx = F(x) (B-2)

The two second-order central-difference quotients needed

are
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T e

L v i
. o o o

Ty TR G AR RIET L ST

YN R

2 =3 - 21,2 IV -
D" (y;) = w2 (yj_1 2yj+yj+l) + (-3 hy;7) (B~3)
1
D (yy) =35 (-y51 *¥y.) * (-% hzyjIH) (B-4)

Substituting Eqs (B-3) and (B-4) into Eq (B-2) gives the

result
['A(xj-l)_4A(xj) + A(xj+1)] uj_1 + 8A(xj)uj

4F (x_.)h?

+[A(xj,1)-4A(xj) -A(xj+l)]uj+1=- .

j=0'l,.o-'N (B-S)

For a uniform rod Eq (B-5) reduces to

F(x.)h?
-u. + 2u. - u. ———
j-1 J j+l EA

j=0'1'ooo,N (B—G’

where F(xj) = P for the uniform load case and F(xj)

‘”x:
P sin (—fl) for the half-sin load distribution, and

X,
A(xj) = (1-<x13). In this study only two boundary condi-

tions are studied, they are:

u(xk) = 0 - zero displacement (B-7)
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du _ _ . -
{ A(xk)E ax (xk) =0 zero axial force (B-~8)

To account for the boundary conditions, the equa-
tions associated with nodes near the end of the rod are

modified as follows:

l. PFor a clamped end at X, =0, then u,=0 in row 1

ERAdc

< and in row 2

9 2
3 4F(xl)h

8A(x1)u1 + [A(xo)—4A(xl)—A(x2)]u‘2 = - B (B-~9)

2, PFor a clamped end at Xy =L, then uN=0 in row

N+l and in row N

BA(xg_luy, ¢ [A(XN_l)-4A(xN_2)-A(xN_3)]uN_2 =

4F ( ) h?
r a5 (B~10)
' E
1
3. Por a free end at xk=L, then in row N+1
4F(xN)h2
8A(xN)uN - 8A(xN_l)uN_l S.—_— (B-11)
E

Sample Problem B-1l, A clamped-free uniform rod is

loaded with a half-sin distribution of uniaxial tension.
The rod is discretized with five grid points. After the

boundary conditions are applied, the system equations become
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b o e s

0

L)

The approximate solution compared with the exact solution

is

approximate ' exact

r 9 r 4 r L 4 N
uy .15088 u, .15122
u, P12 .25758 u, PL2 .26048

< = < > = < )

AE AE
ugy .30178 u, .31038
u .30178 u .31831
4 4
L / \ J \ J \ J

Beam in Bending

The governing differential equation for the bean

in bending is

2 2
a {I(x)E Q_y}_= F(x) (B-12)
ax? dx?

After differentiation it becomes

d'w 5 AL (x) dw + a1 (x) d’w

I(x) +
ax* dx  gy3 ax?  dax?

= F(x) (B-13)

The fourth-order central-difference quotients needed are

)




%) = —L (- - - L e, VI -

D (yj) = 12h2( yj_2+16yj_1 30yj+16yj +17Y5 ) t Ggh Y5 ) (B~15)
2 =1 (_; - 1,2 Vv -

D (YJ) = . ( Yj_2+2y:']._1 2Yj+l+yj+2) + ( ) h Yj ) (B~16)
Y _ 1 _ - 1., VI -

D (yj) = (hj-2 4y._l+6yj 4yj+1+yj+2) + (~zh y5 ) (B~17)

If the moment of inertia I(x) is assumed to be a constant
or a linear function then Eq (B~14) simplifies to

I(x) a'w + o 8I(x) d’w _ F(x)

dx* dx dx? E

Substituting the central-difference expressions for the

derivatives gives

IOty )W 20T (o5 AT Iwy ) + [Ty HAT (eI 4T (g ) vy

_ _ Fban
2T AT ) MWy + TRy W50 = T5

j=0,1,...,N

where F(xj) =P (constan:;.for the uniform load distribu-
tion and F(xj) = P sin (—El) for the half-sin load dis-
tribution.

The boundary conditions modify the set of system
equations as follows:

1. For a clamped end at xk=0, then w0=0 in row 1,

and




[21(x0)+41(x1)+1(x2)]wl—Z[I(xl)+Z'(x2)]w2

: 4
! F(xl)h

+ I(xz)w3 = E in row 2, and

-2[I(x0)+I(x1)]w1+[I(x2)+4I(x2)+I(x3)]w2

F(xz)h”
—2[I(x2)+I(x3)]w3+I(x3)w4 = —F in row 3

2. For a clamped end at-xk=L, then wN=0 in row N+1,

and

Tlxy )37 2 [Tlxy H)+T g o) 1wy _,

+ IZI(XN)+4I(XN—1)+I(XN-2)]WN-1= —F% —— in row N,

and

T(xyg_ 3)Wy_g=21T 00y o) +T{xy_3)Jwy_4
+ [Tlxyg 1) +4T(xy ) +I(xy_3) Twy ,-2[T(xy_,)
+ Il(xyg_¢)1lwy_ y = —F— in row N-1

3. For a free end at xk=L, then

F(xg)h"
2T (% 9 Wy o4 (% ¢ )Wy _+2Tixg)wy = —F—

in row N+1, and
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f T (g p)Wyo3=2[T (3 )+ {3y Vg
+ [Ilxg ) +4T(xg () lwy = 2I(xg_q)wy in row N

Sample Problem B-2. A clamped-free uniform beam

is subjected to a half-sin transverse load distribution.
Tike beam is discretized with five grid points. After the

boundary conditions are applied, the system equations

become .
- 4 ) ( \
7 -4 1 0 0 W, 0.002762
-4 6 -4 1 0 vy $ 0.003906 $
1 -3 6 -4 1 { v, ﬁo.ooznz
i 0 0 2 -4 2 we 0.0
-\ 7/ \ /

The approximate solution compared with the exact solution

is
approximate exact
() ( ( } ( \
w2 9.00943 Wy 0.00831
< w3 $ - pLY 0.0282% ﬁ w3 $= PL" 0.02729
] v, 1E ﬁ 0.04991 v, IE } 0.05021
w5 0.07154 ws 0.07385
\ / \ \ =/ \
¥
!
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Appendix C

Derivation of Finite Element Equations for the

‘Axial Rod with Sample Problems

The governing differential equation for the axial
rod under the influence of an uniaxially distributed force
is given as

Ed; zA(x)E @a-‘x’i = -F(x) (c~1)

Discretizing the domain into E elements with E+1 nodes,

the solution can be approximated as
u(x) = Nj(x)uj i=1,2,...,M

where M = number of nodal parameters, and the repeated
index implies summation.
The differential equation will not be satisfied

exactly. The residual error € is thus defined as

d an .,
e(x) = ax A(X)E 75} uj + F(x) # 0

j=1'2,on.'M (C-Z)

The method of weighted residuals (Ref 12) forces the residual
error to be zero, in some weighted average sense, over the

domain Q. For each method this is achieved by performing

the following integrations.




Collocation:

L

I =/ s(x)G(x-xi)dx =0 {C-3)
0
Galerkin:
L
I =f e(x)Ni(x)dx =0 (C-4)
0

Least Squares:

L

I=[ e(x)a—f)%l—dx=0 (C-5)
0 1 '

Collocation Method

The evaluation of the integral for the collocation
method is carried out by first discretizing the domain into

E elements, each of length h. The integral is thus:

E eh
L I= 2: €(x)é(x-x,)dx = 0 (C-6)
e=1l Y (e-1)h

This integral can be simplified by using local coordinates

x, where

x = (e-1)htx, 0<x<h (C-7)
0<x<L




|
|
|
|

The E elemental integrals with this transformation become
very similar; that is:

h
I, =Jf exi)c(i-ii)di =0 (c-8)
0

Substituting Eq (C-2) into Eq (C-8) along with the coordin-

ate transformation gives

a _ AN, (x) - - -

< [A(x)E —_— u.]+ F(x)% §(x-x;)dx = 0
ax

dx 1

h

Ie=/
0

j=1,2,...,m

i=1,2,...,m (€-9)

where Nj(i) are the local shape functions (tabulated in
Appendix D) and m is the number of nodal parameters per
element.

Integration of Eq (C-9) gives

an. (x) ' -
1 =14 [a(i)E — u.] +F(x4 =0
e dx Cdx J ;{ =§
i
j=1,2,...,m (C-10)

Suppose the area A(x) is assumed to vary linearly in the

domain, then it can be expressed as

A(x) = A {1 - % [(e-1) + §]} (c-11)
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where

' : A

area of element at left end (§=0), and

o = taper ratio (0<0<1.0).

‘ Substituting Eq (C-11) into Eq (C-10) and differentiating

i yields
: - o _ asn, o aN, -
I, ={{1 - E[(e-l)h+x]}AE ——:J-u. - 1 AE —1; u.+F(xﬁ =0
ax? J ax _ -
) X=X
i=lp2,o-o'm
j=1,2,...,m
e=1,2,...,E (C-12)
a:n,
where Nj must be such that —f:} is non~zero. In this thesis
dax
Nj is chosen to be the cubic shape functions associated with
the C1 line element (see Table E-I). For this class of

functions there are four nodal parameters per element
(m equals four). With cubic shape functions (Eq (C-12) can

be written for element e as

Kij uj + Fi = 0 1=1'o'-,4
j=l'00i'4
e=1l,...,E (C-13)

where

=
]

i3 elemental stiffness matrix,

[ ]
I

vector of element nodal parameters, and

F. = vector of element equivalent forces. w
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In the local coordinate system, the elemental stiff-

\ ness matrix has elements of the form
X X %.¥
_MEy, @ - NWoear, 4] _ 028 5 _1)]
Kil-h2 {1 s [(e—l)h+xi]}[ 6+12 h] m[5 =+ s(h

= %E_ {1 - % [(e..l)hq-;';i] }[~4+5 ;l] - %E—[l-tl % +3(T})2J (C-14)

X\

Ki2

. et e e e e 4 b e

o =B {1 -2 [l ] 2] - 22 [ 4 5 ()]

where i=1,2,3,4 and the ii have been chosen as the equally

spaced pcints ii = [0, %, %? hl.

The choice of equally spaced points over Gaussian points

was due to the conclusion of Houstis (Ref 5:327) "that

equally spaced points give slightly better accuracy for

rectangular domains."” Theoretically the Gauss points give

better results according to Prenter (Ref 10:304-314). He

showed that "collocation at Gaussian points using a basis
4

of piecewise cubic Hermite polynomials gives an order h

algorithm for approximating the unique solution x(t) to the

equation

=x"(t) + o(t)x(t) = £(t)

a<t<b

x(a) = x(b) =0
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For a uniform rod the taper ratio a equals zero.

This greatly simplifies the stiffness matrix.

Thus:

(K]

Slg

6 -4h
-2 -2h
2 0

L. 6 2h

-
6 -2h
2 0

-2 2h

-6 4h

.

(C-15)

In the local coordinate system, the local nodal unknowns

are related to the global unknowns as follows:

local
ful} [ u (0))
du
u = (0)
2 -
e
Uy u (h)
du
u — (h)
\Uj, e /

The local and

manner.

local

{7t

F (0) ]

F (%)

4

F(%g

F (h) |

global

’

u((e-1)h))

du
a;((e-l)h)

N

u(eh)

\Q(en)

(F((e-1)h) ]
F((e-1)h+h/3)

F((e-1)h+2h/3)

LF(eh)

(C-16)

global force vectors are related in the same

,  (C-17)




where F(x) = F(x) = P (constant) for the case of uniform
load; and F(x) = P sin (%%) for the case of a half-sin load
distribution.

When elements are connected together the shape
functions chosen guarantee continuity of the function and
its first derivative in the interval (0,1). Therefore,
when forming the global equations, the local equations are
added so that their local nodal parameters coincide with the

appropriate global parameters as defined in Eq (C-16).

Sample Problem C-1l. A clamped-free uniform rod

with a half-sin load distribution is discretized with two
Cl line elements. The nodal parameters are as illustrated

in Fig C-1.

I S

| |
-t ~—X
1 2 L 3

s el ul | u3 r—a—— us
du () e B~ T
278x *1 47dx "2 6 dx 3

Fig C-1. Global Illustration of a Clamped-Free Uniform
Rod Approximated by Two Cl Line~Elements with
a Half-Sin Load Distribution
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The unreduced global equations are

(6 -2 6 - o o] u) [ sin(0) +0 )
-2 -L. 2 0 0 0 u, sin(g) + 0
REl2 0o 4 -L 6 -L ) u, . oe sin(z) + sin(x) >
5)2 6 L -8 L 2 0 u, sin(z) + sin(%lr-)
o o 2 o -2 1| | u 0 +sinfy
0o o 6 L -6 2n| | w) | 0o o+ sin(m) )

o

These equations can be redﬁced by using the boundary condi-
tions. At the left end, the displacement uy is zero; and
at the right end, the axial force AE ue is zero. Therefore
rows one and six and the corresponding columns can be

eliminated from the system of equations. The result is

-1 4 b
. 2 o o ( uz‘ .5
0 4 -L 6 u 1.866
4AE 3y =0p ﬁ )
1.2 L -8 L 2 1 u, 1.866
5 0o 2 O -2_ | s -

The approximate solution compared with the exact is

approximate exact
f uy .6443 u, .6366
‘ ug . PL2 . 2597 P ] u, _ P12 .2605
u AE 1 3222 u AE ) 3383
4 4
Y us 03222‘ \15 -3183
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Galerkin Method

Galerkin's Method is expressed by Eq (C-4). That

{ad; [A(;)E ‘—"g%’-] + F(x)} N;dx = 0

i=l'2’.o.'M

Integration by parts of the first term

L L L
I =-f{ A(xX)E Efi Eﬂi u.dx + A(X)E du N + F(x)N.dx = 0
dx dx j dx i i
0 0“0

i=1l,2,...,M
j=1,2’ooo'M (C-la)

L

The boundary term A(X)E %ﬁ Ni vanishes for both cases of
0

boundary conditions studied in this thesis. Therefore

Eq (C~18) becomes

L dNi an. L
I = A(X)E T ?5} dx uj - F(x)Nidx =0
0 0
i=1'2’¢oo’M
j=1,2,...,M

Since the domain is discretized into E elements the inte-

gral I can be written as




T T T Y e ——— s Y e

E
3

= eh
E dN. dN.

I=ZIe= z:f 3A(x)E-a;l—d—§-'-u. -F(x)Ni dx = 0
e=1

e=1lY(e~-1)h

i=l,2,...,m

j=1,2,...,m (€19

For these integrals to exist the shape functions Ni must
be at least C° continuous. They are chosen in this study
to be the linear shape functions associated with the C°
line element described in Appendix E. For the Galerkin

method Eq (C-11) is more conveniently expressed as

0

Ax) = (1 -3 A+ Qag (c-20)

where

]

A[ _ a(e;l)h]

-]

Equation (C-7) can be used to transform Eq (E-19) to a

@’

2R

local coordinate system. With the substitution of

Eq (C-20) the element integral I, becomes
h _ _ a j

_ _Xx X 1 -1()"e = {

Ie ‘f {‘1 n'Ay * (h)AR}E [—1 1]{u }d" i

0 e+l i

‘d§=0

[
1
=gk

=1k

e=1,2,...,§ (C-21)




where F(x) = P (constant) for the uniform load distribution;
and F(x)= P sin (%[e-l)tﬁ-i]) for the half-sin load dis-

tribution. For the half-sin load distribution Eq (C-21)

becomes

I = (AL+AR)“ e + PLE . Te . T({e-1) 1
e 2h -1 1]jfu 2 Sin — = Sin ————
: e+l T E E -1

E
m cos 1? 0
E

e=1,2,...,ﬁ (C"ZZ)

For the uniform load case and constant area A, Eq (C-21)

-1

e=1,2,...,E (c-23)

becomes

u 1

e Ph

u 1

e+l

These equations are identical to the equations for the

standard finite difference method detailed in Appendix B.

Sample Problem C-2. A constant area clamped-free

axial rod is loaded with a half-sin distribution of uni-
axial force. This problem is approximated with two C? line

elements as shown in Fig C-2.
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Fig C-2. Global Illustration of a Clamped-Free Uniform
Rod Approximated by Two Cc’ Line Elements with a
Half-Sin Load Distribution

The assembled global equations are

l -1 o u; -1 +0 l1+0
2AE _ 2PL PL
< |1 2 -1 u, = :;r 1 +1 + = 0+ 0
0 -1 1]ug 0 -2 0+ 1

Since ul=0 by virtue of the boundary conditions the eguation

reduces to
AR 2 —1] {uZ; . {.40528}
L -1 1 uy .11567
The solution is
u, _PL {.2605}
u, AE .3183
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which matches the exact solution.

Least Squares Method

The least squares technique of forming finite ele-
ment equations relies on the evaluation of Eq (C-5). Sub-

stituting ﬁq (C-2) into Eg (C-5) yields

L
dN. dN.
1 =/3§.‘§[A(xm - uj] + F(x)i 2 [A(x)E Ef—]dx =0
0

i=1,2,...,M
j=1'2,~uo,M (C-24)

Multiplying and differentiating terms in the integrand

gives
L aN; a’m.- . an(x) 9N AN,
I = E? A% (x) —L + X 2 1 ax u.z
dx? dx? X dx dx 3
0

L

43w, aN.,

+ Ef F(x)%A(x) i, dalx) JLfdx =0
0 ‘ dx

i=1,2,...,M
i=1,2,...,M (C-25)

This integral can be written as the sum of the ele-
mental integrals in a local coordinate system. The trans-
formation from global to local is given by Eq (C~7). The
global shape functions Ni could also be transformed, but the
linear shape functions of Table E-1 have all the required
properties of the local shape functions desired. To

simplify the albegra the derivatives of the shape functions
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are written as

. aN.
! —j% = h [a.+Ai (
5 dx 1

%

) N 52'. (%)2] i=1,2,...,4
) 1

=]

diz = Ai + Bi ( 1,2,.0.,4

where
3
ay = [0, £+ 0, 0] -
A, = -1 (-6, -4h, 6, -2h]
i 2 ? r (4
h

1
B, = - [12, 6h, -12, 6h]
1 hz

The final result after integrating the polynomial terms

with F(x) = P (constant) can be written for element e in

the form
Ie = Kijuj'+ Fi =0 i=1,2,...,4
j=1,2,...,4
e=1,2'-.-'E (C-ZG)
where

Kij = E {aiaj[ALz-zALARmR’]
+ (aiAj+Aiaj)[-ALAR+AR2]
+ (0B +Bja ) [~ 3 ArAp + % hp’)

1
+ AR (55 (20A;* - 40 A A_+80A %))
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+(Aisj+aiAj)[£5 (5A 2~20A A +45A_%) ]

1 2 2
+BiBj[33 (23, ~9A, A_+27A )]}

i=1,2,3,4
j=1,2,3,4

Fi =P [o;(Ag-Ay) + (Ay + 3 B;)Apl

and .
a T(e-1) )
o [ n e
u, Qu 7 (e-1)
= 4 dx E
i T = ;
Te
ue+l u —g
Ueva) | &2 =)

For a uniform rod the elemental stiffness matrix Kij is

simplified considerably due to the fact that Q%ﬁél = 0.

Thus Eq (C-26) has the following terms for a half-sin load

distribution:
\ 12 4h =12 6h
2 _ 2
« . AE 6h 4h? -6h 2h
1] h® -12 -6h 12 -6h
| 6h  2h? -6h  4h?
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6
(- § (CL+CO) + 5= (SL-SO) ;
} - 2 (cr+2c0) + 8B (sp-s0) '
F. = PEAE
i m {
‘ 6 12E
Y (CL+CO) -~ “h (SL-S0)
) - 2 (2CL+CO) + %E (SL—SO)J
: | where
CL = cos %? + CO = cos IiEEll ’
E E

]

SL = sin %? + SO = sin
E

Sample Problem C-3. A uniform clamped~free rod is

cha :

subjécted to a half-sin distribution of uniaxial tension.

by
This problem is discretized into two elements as illustrated
in Fig C-1. The reduced global equations as formed by the

least squares technique are

— () / ) !
4h? -6h 2h? 0-7 u, A1 + 0 |
;
-6h 26 0 -12|fu, 2.1 + 2.1 ]
ﬁ 8AE Y = p ) :
; L 2h? 0 8h? -6h u, ~1.2 + 1.2 ]
0 -12 -6n 12| |ug 0 - 2.1
3 - =\ / \ )

% The solution to these equations is

: . 117




(Y (o

{ J
|

| u, AE ) 3183 j

| u .3183

' \ 5/ J

which agrees with the exact solution.
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Appendix D

Derivation of Finite Element Equations

for the Beam in Bending

A beam in bending has a fourth-order linear differ-

ential equation governing its transverse displacement. The

equation is

) _
4 rx)p SV [ By (D-1)
dx? dx?

; Where j=1’2’.-o'M;

If w(x) is approximated by w(x)=Nj(x)Wj

the residual error in the discretized domain will be of the

form

2
e(x) = 4

"> I(x)E __1§ . - F(x) # 0
b4

i=1,2'..o'M (D-Z)

The method of weighted residuals is also used for this prob-

The integral

lem to derive the finite element equations.

equations associated with each of the following finite ele-

ment techniques are repeated here for convenience.

Collocation:

L
I =[ e(x)&(x-xi)dx =0
0



e AV . afR A a= | eiman . ¢

Galerkin:

I

L
f e(x)Ni(x)dx =0 (C-4)
0

Least Squares:

L
1=/ € (x) 3%—%’-(1}:=0 (C-5)
0

1

Collocation

Substituting Eq (D-2) into Egq (C-3) yields

L

" 3 2
1 =jr ;E [I(x) it + 2 L) a7 » €I d Nj] W,
0 ax" dx g3 dx?  dx? J

- F(x) 6(x-xi)dx =0

j=1,2,...,M (D-3)

The transformation‘from a global coordinate system to a
local coordinate system is identical to that for the axial
rod as detailed in Appendix C. 1In this study the moment

of inertia I(x) was assumed to be either constant or linear.

That is:

I(x)

I(1-a-%) (0<a<1.0) (D-4)
Therefore

aI(x) _ _

s
»®
e
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2
and Q_E%EL = 0 for all x
dx

Thus the integrated Ie associated with element e becomes

. _ .y dN, . &N, .
I =§{1 - E[(e—l)h+x]}IE —d ., - 21— w.-F(}) =0
e ax* J L ax® J
X=X

i=l,2,...,Mm
j=1,2,...,Mm
e=1,2,...,E (D-5)

where the local shape functions Nj must now be such that
a*N,
—171 is non-zero. The functions chosen are the septic

ax"
shape functions (m=8) for a c? line element. (See Appendix

E.) The elemental equation for element e can be written in
the form
I.=K- W -F- = 0 (D-G)

(s)

. . . (s) (3),
where Kij is defined for section as Kij + Kij : Kij

is the part of the stiffness matrix associated with the

a“N.,
~—1 terms; and Ki.(S) is the part associated with the

d;{'b ]

dsn,

ax?

Let Ii = {l - % [(e-l)h+§i]} and x = % . then:




(s)
il

(y)
Ki2

(u)
Kiy

(s)
i4

()
is

()
i6

(4)
i7

()

Lo
t

g

Sy - s
w =1 &

e
o]

.‘.

=3
(N

(ml
[
=

o)
. ,‘
=

]
Moo
m =

n

d

-
o}

.‘.

-
51 > R

= - 20XE

= -20XEh

- . 20xE

hz

(-840 +
[~-480 +
[-120 +
[ -16 +
[ 840 -
{-360 +
( 60 -
( -4+
[-840
(-480
(-120
( -16
{ 840

+

10080x - 25200x”
5900x - 12960x"
1200x - 2700x>
120x -  240x°

10080x + 25200x>

4680x ~ 12240%°

840x + 2340x32

60x - 180x2
5040x - 8400x*
2700x - 4320x?

600x -~ 900x>

60x - 80x?

5040x + 8400x?
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+

+

16800x°)

8400x°1

1680x°]

140x°)
{D-7)

16800x°)

8400x°1

1680x°]

140x°]

4200x°]

2100x°]

420x°%)

35x3]-9aEh

4200x°] (D-8)




Kis(’) = - Eﬁ‘ﬁ [-360 + 2340x - 4060x? + 2100x*)

(s) = _ 20xE [ 60 - 420x + 780x2 - 420x°]

i7

K

(s) - 2axEh [ -4 + 30x - 60x2 + 35x%3)

i8

K

The force vector Fi is given by Fi = P (constant),
i=1,2,...,8, for the uniform load distribution, and
F, =P sin {% (e-1)h + ii} for the half-sin load distribu-

tion. As with the axial rod, the collocation points ii

have been chosen as the equally spaced points; X; = ii%llh,

i=1,2,o-o,8.

Galerkin
For the Galerkin method Eq (D-2) is substituted
into Eq (C-4) and the stiffness term is integrated by parts

twice. The result is:

L 2 22 L
d“N. d°N. 2. dN.
I=/(EI(x)——-1 ig.dx - BEI(x) &¥ 3
dx? ax? dx? ax
0 0
\ L L
d d°w - =
+ P (EI (x) dx) Ni [ F(x)Nidx =0
o Jo

i=1,2'o-o'M
j=1'2’oco'M (D-g)

The two boundary terms

L
dN,
d?w i
EI(x) — =

dx 0




T TR TR eI W e

and

3
Ex(x) S¥ + E

dx?

DI (x) da’w

dx dxz

N.

i
0

both vanish for the boundary conditions studied. The fol-

lowing conditions give this result.

Since the cubic shape

functions N, satisfy the clamped end geometric boundary

aw

conditions (w = ax - 0) , the boundary terms vanish for

clamped ends. The boundary conditions for a free right

end are
2
I(X)E dw
dax?

x=L

3
I(x)E &¥
dx3

x=L

These conditions correspond to zero moment and zero shear

force respectively. Therefore if the right end is free

the boundary terms again vanish.,

Equation (D-9) is thus

simplified; and if the same coordinate transformation is

performed as for the axial rod, the result for element e

can be written in the form of Eq (D-6) where

-
1 12

« ) (IL+IR)E 6h
13 2h? -12
6h

2h -12
4h? -6h
-6h 12
2h? -6h

-—

6h

2h?
(D-10)
-6h

h2
4

and for the uniform load distribution F(x) = P (constant)

r . h/2 1
h?/6
h/2

3 (D-11)

\ -h?/6 /
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The half-sin load distribution F

equivalent force vector of

6(29” (cL+co)

E

2(7r)2h(CL+CO)

P
ERE

6(%})2(CL+c0)

E

T

2
2(=—) h (2CL+CO)
-

where

CL

Cco

Least Squares

For the least squares method Eq (D-2) is substituted

into Eq (C-5) and the result is:

(x) =P sin (%?) gives an

7

B.3
COo + 12(;) (S1,-S0)

L 50
™

n2
62E~ (s0-s1) -
.",3

> (D-12)

E 3
CI, + 12(;) (SL-S0)

52
622 (so-s1) + & s1
w? T

J

SL = sin =
B
so = sin Te-l)

E

| d*N a°N, 2 AN,
1= EI(x) —1 + g 3L _ 1, pdIx) _ ],
0 ax* dx dx 3 dx? dx 2 ] J
d*N, a’Ny 2 an,
“Fix) | |ET(x) —E + g &) _ 4, pd I _ i4 .
dx* dx ax? dx?  ax?
(D-13)
2
Since I(x) = 1(1-(1§) , 4 I(x) 0

dx?
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If Eq (D-13) is written in local coordinates for a domain
that is discretized into E elements, the integral for ele-

i ment e is

h
-
0

a*n

dk d3 7] .
[EI (X) ——l + E aI (X) ——1 WJ - F(}-{) EI (;()

ax  ax®

ax*

- 3
ar(®) 9V -

dx 4ax®

+ E

i=1,2,...,Mm
j=1,2,...,m
e=1,2,...,E (D-14)

For this method the septic shape functions are chosen (see

Appendix E), and let

d®N.
—J1 =g, + hx [A, + 2

ax? i i 2

3
X
C; + 7 D;l

W%,

B, +
1

a"N.
—d

ax*

A, + Byx + cix2 + Dix’ (D~15)

where X = % , and

D ey s A

ai = [0, 0, 0, 1' 0' 0, 0, 0]

A, =-l-[-84o, -480h, -120h?, -16h®, 840, -360h, 60h?, -4h%]

B; ='i: {10080, 5400h, 1200h?, 120h®, -10080, 4680h, -840h?, 60h’]
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Ci-"2: [-25200, -12960h, -2700h?, -240h®, 25200, -12240h, 2340h%, -180h°]
h

D, = =1 [16800, 8400h, 1680h%, 140h®, -16800, 8400h, -1680h?, 140h®)
h*

Let I(X)= I (1 - ) + I

h)

Then Eq (D-14) can be written in the form of Eq (D-6)

where

2 2
h {8(IL ZILIR+IR )aiaj

2 2

(I, °-5I, I +41, )(aiBj+Biaj)
2 2

(I,°~ 6I I +5I, )(aicj+ciaj)

z-
10 (IL 71 I, +61 )(aiDj+Diaj)

2_ ' 2
(IL 3ILIR+3IR )AiAj

-t ILIR+IR )(AiCj+CiAj)

127




i + (10 ILz- % ILIR-rg-IRz)(AiDj+DiAj)
|
13 L. 1 5
+ (350 I, ~ 75 Iz * 5 Ig' ) (B;C4C;B,)
19 2_ 23 3 ;2
* U430 I - 8 Iz 7 Ix ) (BjD4*D;BY)
3 2_ 29 5 2 }
* 377 Iy - 168 InIr* 16 Tr ) (C3D44D3C5)

i=1,2,...,8
j=1,2,...,8
e=1,2,...,E (D-16)

The force vector for the uniform load case F(x) = P is given

by
Ay
)

F. = Ph ;(IR—IL)Z(}Li + (BIR-I 35

1 L

1 B. c.

D,
1 1 1
+ AIp-Ip) &+ (SIp-Ip) 15 + (6Ip-I;) 20}

i=1,2,...,8
e=l'2,--o’E (D"'l?)

4 The uniform beam has IL=IR=I and a=0; therefore Egq (D-16)

reduces, to
i K.. = EI’h |A.B +1 (A.B.+B.A )+l (B.B.+A.C_.+C.A.)
' ij i3 72 PP T O WLETRIY LYy
+ 1 (B.C.+C.B.+A.D.+D.A.) +& (C.C.+B.D.+D.B.)
CERNE bt Rt bt R Tt Rt S LM - SRS bt Rt Bt Mg gy
+ 1 (c.p.+p.c.) +2 D.D. i=1,2 8
6 'Ci“j ity TT PiY5 1érseey
j=1'2'.!. '8
e=l,2,...,§ (D—lB)
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» g

and Eq (D-17) reduces to

1

1 1

Substituting the appropriate constants in Egs (D-18) and
(D-19) gives the result for I, shown in Eq (D-20). The
half-sin load distribution results in an equivalent force
vector which was quite unexpected. The force vector is

given by the following equation

Fi =KijEj i=1'2'cla,8
j=1,2,...,8
where
Kij = uniform beam stiffness matrix from Egq (D-20)
ang s 3 1
&y sin Tlezd)
E
2 T(e-1)
(;E) cos ————
E
-L gjp Tlezl)
m E
PL - cos Tle-l)
Ey =7 ﬁ 3 E ¢
L . Te
(F) sin ';_:—
L\ me
(F) cos —
E
-% sin 1r__e
E
- cos %?
E

- 1 i 1 -
F. = PIh {Ai +3 B, +3C, +7 Di} (D-19)

it
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Shape Functions and Several Derivatives

[ |
'1' Appendix E

!

!

: The shape functions used for a particular finite
element technique determine the nature of the approximate
solution (Ref 6:131). These functions as used in this
‘ study can be formed from the familiar Hermite Polynomials

(Ref 6:152-155). Unfortunately, this method does not con-
vey the physical nature of the functions.
A linear approximation of the field variable
2
a2
a line element, as depicted in Fig E-1l, the nodal parameters

within an element is given by ¢ (%) = [1 ilg ;. For

¢1 and ¢2 are given by

M NI

¢ ()

|

! Fig E-1. C° Line Element
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Inverting this relation and substituting a; and a, into

the approximation eguation gives .
. ) 1 0 ¢1
d(x) = [1 x] 1 1
~ " ®| | %

The product of the two matrices is defined as the vector of
shape functions Nj' where j denotes the shape function
associated with nodal parameter ¢j. The approximation equa-~

tion is now of the form:
~ m »
¢(x) = ;-Nj¢j j=l’2'o.o'm
J=

where m = number of nodal parameters associated with
the element.

This type of element is said to have C° continuity because
only the function is continuous between two connected ele-
meﬁts. The linear shape functions are given in Fig E-2,

These shape functions exhibit properties of the "kronecker"

delta function. That is:

N, (x;) = 8,, =
Y 13 0 i#j
A line element possessing cl continuity will have ;
continuous first derivatives of the field variable between
two connected elements. This requires a cubic approxima-
tion of the field variable. By duplicating the process

followed for the linear shape functions one can transform
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‘ |
1 N (x) x
‘ N1= (I-E)
o /
_X
. No%h
0 . —X
h |
;;

Fig. E-2. Linear Shape Functions (Ref 5:154) ;
the equation ¢(x) = a; + a2§ + a3§2 + a4§3 into
~ _ 4
= N.d.
$x) = 5 N30y
i=1

where the nodal parameters ¢j are illustrated in Fig E-3.

;&) o |
A {

!

Fig. E-3. cl Line Element 4
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1

The cubic shape functions associated with the ¢~ line ele-

VN Yo, gl et i P e V1

ment are given in Fig E-4. The linear and cubic shape func-

tions are summarized in Table E-I.

Fig. E-4. Cubic Shape Functions (Ref 6:154)

The highest order element used in this thesis is a
C? line element. It allows continuity of the third deriva-
tive 6f the field variable between elements. The approxi-
mation equation.is a(i) =a; + a2§ + a3§z + a4§° + asi“
+ a6§’ + a7§° + a8§7. Since there are eight undetermined
parameters the C?! line elementmust be defined with four

nodal parameters at each of its two nodes. Thus the ¢j

vector is




Table E-1

Linear and Cubic Shape Functions with

Derivatives of Specific Interest

]

[
SRt
A
[

(a) Linear: 0 <

i
=3 b
A
[

(b) Cubic: 0 < x

hi{x-2x2 + x*}

ax? - 2x?

_hl-x* + x’] J

(& [2x~1] )
h2
-i— [3x-2]

“62 (2x-1]

h?
£ e




T DU ST Sy D

L e A A e, T R e e S e et e o - - PR

e e A £ A B SN TR AR O s S, i

(4, ] (s
¢ ¢,§(0)
¢3 ¢r5zx0)
4 ¢y . ¢ 3xx(0)
b5 $ (h) |
¢¢ ¢,z (h) g
¢ br gz (0)
% ¢ zzz (D) | |

The third and seventh parameters are proportional to the
bending moment in a beam at x=0 and x=h. . The fourth and
eighth parameters are proporticnal to the transverse shear
force. The septic shape functions are given in Table E-I1I,
along with their fourth derivatives. Shape functions N,
through N4 are shown in Fig E-5; the other four shape func-

tions are simply a reflection about the point x=h/2.

N (x)
4

S

Fig E-5. Septic Shape Functions (Ref 5:155)
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: Table E-II

- \ Septic Shape Functions with Derivatives ]
A of Specific Interest

i s . s 7. )
p ! : 1-35x" + 85% - 70x + 20x']

{
= ~ h[x-20x" + 45x° - 36x° + 10x’]
i

» [ gx%-5x" + lox® - x¢ + 2x)
N h? [%xs-—g-x" + x° - %xs + —é—x7]
' (-
. Ne© =
! 35x" ~ 84x5% + 70x° - 20x7) r

) h{-15x" + 39x° - 34x® + 10x’]

i hzlgx" - 7x° + -]—'2§x‘ - 2x’]
hs[—%X" + %—xs - %x‘ + %x’] )
\
; (1 N
—[-840 + 10080x - 25200x2 + 16800x°]
h
4
' -3;[-480 + 5400x - 12960x% + 8400x°)
h
-l:[-lzo + 1200x - 2700x> + 1680x°]
h
- d"N}T %[ -16 + 120x - 240x? + 140x?]
X { {dx" 1 2 3
4 =-[ 840 - 10080x + 25200x* - 16800x"’]
g h
‘ %[-350 + 4680x - 12240x2 + 8400x°]
J h
{ 1 2 3
f ;;[ 60 - 840x+ 2340x2 - 1680x°]
3 '%T[ -4 + 60x - 180x2%2 + 140x°%)

where 0 < x =




e —r < Ser——

— . ey

f——

T AT e g

Y LN = e ey e - oo @

Appendix F

Derivation of Finite Element Equations for the

Nonlinear Problem with Sample Calculations

The differential equation given for the nonlinear

problem studied is
[1-¢x]¢xx =0 0<x<1 (F~1)

with the boundary conditions

$(0) =0
¢x(0) =1
$(1) = Cy (constant) (F-2)

where the subscript x implies differention with respect to
the independent variable x. Equation (F-l1) can be stated

in two different but equivalent forms. These are

(F-3)

]
o

A) b, - 3 [6.21

1 =
B) -3 [(1-6,)%1 =0 (F-4)

The domain was discretized into two elements of

length h, and hz'respectively, with the global nodal param-

1
eters given in Eq (F-5). The two elements are joined at a

double node as shown in Fig. F-1.




©
[

n
©
—
(=]
-~
©

wn

L
—

=3

[
+

L

+
o = 2010) b, = 2y )
2 dx 6 dx
(F-5)
, _amy) o - G0(1)
4 dx 8 dx

where ¢3 and ¢4 are the approximate solutions to the dis-
placement (potential function) and the slope (velocity)
respectively at the right end of the first element; and
¢5 and ¢6 are the approximate solutions at the left end of

the second element. The discretized domain is shown in

Fig. F-1.
¢ IL¢
¢1J 3 5 ¢7
Y x=1 x
1~ h1 hz o

Fig FP~1. Discretized Domain for Nonlinear Problem
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It is necessary to have at least one double node because

the differential equation with the boundary conditions given
by Eq (F-2) has exactly one discontinuity. The double node
allows the specification of the discontinuity, or jump, in
the approximaﬁe solution. The jump is modeled by two equa-

tions. They are:

b5 = o5

¢4 ¢6 + A (F~6)

where A is the change in slope between elements. The first
equation insures continuity of the function across the inter-
element boundary; and the second guarantees the required -
change in slope.

With this discretization, the finite element equa-
tions can be derived by the same process as the linear prob-
lems. (See Appendices C and D.)

Equation (F-6) is solved hy an iterative process.
With the substitution ¢"(X) = Nj(;c)d)jn , the iterative

equation for element e becomes

h
21 n = n+l _
J{ {1-3 5 0"} NN, gk, "t =0
0 x

X “x
0<x<h i=1,2,3,4
e=],2 j=1'213l4

k=1p2'3'4 (F-7)
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where ¢jn'are the nodal solutions obtéined from the nE-Il

iteration.

By the exact same process Eq (F-4) gives

h h
- 1 n -
1-N, ¢ n} N, N. dx¢ " =/ (1-N, ¢, )N, dx
j(; { kx k iz73g J 0 kz'k iz

i=1,2,3,4
j=1,2,3,4
k=1,2,3,4 (F-8)

The shape functions chosen are the cubic functions
given in Appendix E. The local shape function derivatives

can be written in the form

i=l'2,3'4 (F-g)

[%l 31‘%! 3]-

With N._ in this form Eqs (F-7) and (F-8) can be
b
written in the following form for hl = h2 = h

n+l _ -
Kij¢j - Fi 1—1'2,00.,4
j=1’2’o 00,4

e=1,2




o

r, = 84g; + 1058, + 140
r, = 7031 + 8432 +.105 (F-10)

r3 = 603l + 7082 + 84

and for Eq (F-~7) - formulation A

- _ 3 n__ n n,_ n

B, = + [3(8,"-05") +h (20,"+¢,™)

Fi = O i=1'2'3'4 (F—ll)

and for Eq (F-8) - formulation B

3
By ==% [2(; =63") +h(o, +¢,™]

= 2 n_.n n,. n
By = 2 1306,7-0,") +h(26,"+6, ™1
s ' _

P, =" %0 (188, + 308, + 60) (F-12)
F. =~ (248, + 358, + 60)

2 =760 1 2
F, = - (188, + 308, + 60)

3= 0 1 2

h
F, = -6—6(631-!-53

4 2)

The products of Ai and Bi in matrix form are as follows for

h=1/2.
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144 48 -144 24

aal = © : 16  -48 8
AA] = [A.A. =
13 144 -24
(symmetric) 44

; )
-288 -84 288 -60

(AB] [ ] -24 84 -18
AB] = [A.B.+B.A.]=
313 -288 60
(symmetric) 12
L -
B -1

144 36 -144 36

[BB] [ ] 9 -36 9

BB] = [B.B.] =
] 144  -36
(symmetric) 9

—

Sample Problem F-1. The nonlinear problem for

A=2 is solved by formulation A. The initial guess is

¢g = ({0, 1, 1,11, _;I 0, -11

For element 1l:

Bl = 3!82 = -3

r,=77,r, = 63,I'y = 54
thus,
-
720 348 -720 12
K 1 206 -348 -32
= e—
13 840 720 =12
L_(symmetric) 38
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For element 2:
Bl= -3'Bz=3

1

203, T

2 3

(3312 1500 -3312

1 746 -1500
K.. = 5=

ij 840 3312

(symmetric)

Assembling the elemental matrices in

tions gives

720 748 -720 12 0 0
206 -348 -32 0 0

720 -~12 0 0

38 0 0

ksymmetric)

147, T, =

3312 1500 -3312 156 | ¢g
746 -1500 a| | ¢
3312 -156| | ¢7

114

156

~-156
74

i

the global system equa-

0 0 r¢i\
0 0 65
0 0 63
0 0 y

4 (e

Substituting the jump conditions and the boundary condi-

tions gives the reduced system equations. They are
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- -1 r ~
720 -12 0 0 0 ¢; ) 3437
-12 38 0 0 ] ¢}, 32
- 1
1 o -1 0o 0 < ¢s $ =< 0 >
0 1 0 -1 o0 ¥ 2
0 0 15 4 74 1 0
L 6 Jl . ¢8 J. . J

Solving this equation gives the following which matches the

exact solution.
¢; = [O' 1, 0-5' l, 005’ "1’ 0, _1]

The next iteration is performed with ¢in = ¢; which gives
¢; . This second iteration gives the same numerical

results as the first, implying convergence of the algorithm.

Collocation

The domain is discretized in the same manner as
for the Galerkin's method. The derivation of the finite
element equations is by the same procedure as followed in
Appendices C and D for this method. The two formulations
give the following global equations for element e.

Formulation A:

1 h 1 n n+l
(1-5N, ¢, )N, -5 N. N, ¢ } ¢, =0
{ 27k Tk w2 3k kxx k ==
X=X.
1
0<x<h i=1,2,...,m
e=1'2 j=l'2pooo'm

k=1'2'.oo'm (F-13)

145




Formulation B:

-(1-N, _¢. )N, 4N, N ¢ “% o.My ¢
; kg k xx Jx kxx k M- _ 3 kixl- - k
, =X X=X
0<X<h i=1,2,...,m
e=1,2 j=1,2,...,m

k=1'2'-¢¢’m (F~14)

The cubic shape functions given in Egq (F-9) are used for

this method also.
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